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Linear Time-Invariant (LTI) System

• Response of a system

• The system is linear if

• The system is time-invariant if
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What’s Nice about LTI System?

• Can use superposition

• Easy conversion between time and frequency 
response

• Most systems in real life are LTI systems
– Focus of this class
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Example:  Low Pass Filter (LPF)

• Input signal:  

• We know that:
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Exponential Representation

• Euler’s Theorem

!"#$ = &'( #$ + " (*+ #$

• (*+(#$) and &'((#$) can be represented by linear 
combination of complex exponential:
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Magic:  Turn Diff Eq into Algebraic Eq

• Integration and differentiation are trivial with 
complex numbers:

• Any ODE is now trivial algebraic manipulations … 
in fact, we’ll show that you don’t even need to 
directly derive the ODE by using phasors

• The key is to observe that the current/voltage 
relation for any element can be derived for 
complex exponential excitation
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Solving LPF with Phasors

• Let’s excite the system with a complex exp:
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Magnitude and Phase Response

• The system is characterized by the complex 
function

• The magnitude and phase response match our 
previous calculation:
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Why did it work?

• Again, the system is linear:

• To find the response to a sinusoid, we can find the 
response to !"#$ and !%"#$ and sum the results:
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(cont.)

• Since the input is real, the output has to be real:

• That means the second term is the conjugate of 
the first:

• Therefore the output is:
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Phasors

• With our new confidence in complex numbers, we 
go full steam ahead and work directly with them … 
we can even drop the time factor !"#$ since it will 
cancel out of the equations.

• Excite system with a phasor:

• Response will also be phasor:

• For those with a Linear System background, we’re 
going to work in the frequency domain
– This is the Laplace domain with 
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Capacitor I-V Phasor Relation

• Find the Phasor relation for current and voltage in 
a cap:
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Inductor I-V Phasor Relation

l Find the Phasor relation for current and voltage 
in an inductor:
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Impede the Currents !

• Suppose that the “input” is defined as the voltage 
of a terminal pair (port) and the “output” is defined 
as the current into the port:

• The impedance Z is defined as the ratio of the 
phasor voltage to phasor current (“self” transfer 
function)
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Admit the Currents!

• Suppose that the “input” is defined as the current 
of a terminal pair (port) and the “output” is defined 
as the voltage into the port:

• The admittance Y is defined as the ratio of the 
phasor current to phasor voltage (“self” transfer 
function)
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Voltage and Current Gain

• The voltage (current) gain is just the voltage 
(current) transfer function from one port to 
another port:

– If ! > #, the circuit has voltage (current) gain
– If ! < #, the circuit has loss or attenuation
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Transimpedance/admittance

• Current/voltage gain are unit-less quantities

• Sometimes we are interested in the transfer of 
voltage to current or vice versa
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Direct Calculation of H (no DEs)

• To directly calculate the transfer function 
(impedance, trans-impedance, etc) we can 
generalize the circuit analysis concept from the 
“real” domain to the “phasor” domain

• With the concept of impedance (admittance), we 
can now directly analyze a circuit without 
explicitly writing down any differential equations

• Use KVL, KCL, mesh analysis, loop analysis, or 
node analysis where inductors and capacitors are 
treated as complex resistors

I
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LPF Example:  Again!

• Instead of setting up the DE in the time-domain, 
let’s do it directly in the frequency domain

• Treat the capacitor as an impedance:

• We know the impedances:
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time domain “real” circuit frequency domain “phasor” circuit
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Bode Plots

• Simply the log-log plot of the magnitude and 
phase response of a circuit (impedance, 
transimpedance, gain, …)

• Gives insight into the behavior of a circuit as a 
function of frequency

• The “log” expands the scale so that breakpoints in 
the transfer function are clearly delineated 
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Frequency Response of Low-Pass Filters
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Frequency Response of High-Pass Filters
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Example:  High-Pass Filter

• Using the voltage divider rule:
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Approximate versus Actual Plot

• Approximate curve accurate away from breakpoint

• At breakpoint there is a 3 dB error
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HPF Phase Plot

• Phase can be naturally decomposed as well:

• First term is simply a constant phase of 90 degrees

• The second term is the arctan function

• Estimate arctan function:
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Power Flow

• The instantaneous power flow into any element is 
the product of the voltage and current:

• For a periodic excitation, the average power is:

• In terms of sinusoids we have
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Power Flow with Phasors

• Note that if  !" − !$ = &
' , then ()$ = * +,

' -./ &
' = 0

• Important:  Power is a non-linear function so we can’t 
simply take the real part of the product of the phasors:

• From our previous calculation:
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Summary

• Complex exponentials are eigen-functions of LTI 
systems
– Steady-state response of LCR circuits are LTI systems
– Phasor analysis allows us to treat all LCR circuits as 

simple “resistive” circuits by using the concept of 
impedance (admittance)

• Frequency response allows us to completely 
characterize a system
– Any input can be decomposed into either a continuum or 

discrete sum of frequency components
– The transfer function is usually plotted in the log-log 

domain (Bode plot) – magnitude and phase
– Location of poles/zeros is key 
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