

EE105
 Microelectronic Devices and Circuits

Prof. Ming C. Wu

wu@eecs.berkeley.edu
511 Sutardja Di Hall (SDH)

Linear Time-Invariant (LTI) System

- Response of a system

Output $a x_{1}(t) \rightarrow a y_{1}(t)$ $\boldsymbol{y}(\boldsymbol{t}) \frac{+b x_{2}(t) \rightarrow b y_{2}(t)}{a x_{1}(t)+b x_{2}(t)}$
$\rightarrow a y_{1}(t)+b y_{2}(t)$

- The system is linear if

$$
a_{1} x_{1}(t)+a_{2} x_{2}(t) \longrightarrow \mathrm{H} \longrightarrow a_{1} y_{1}(t)+a_{2} y_{2}(t)
$$

- The system is time-invariant if

$$
x(t+T) \longrightarrow H \quad \longrightarrow y(t+T)
$$

What's Nice about LTI System?

- Can use superposition
- Easy conversion between time and frequency response
- Most systems in real life are LTI systems
- Focus of this class
$\cos (\omega t)$

Example: Low Pass Filter (LPF)

$$
\left[\frac{\mathrm{rad}}{\mathrm{~s}}\right] \stackrel{\omega}{\omega}=2 \pi \cdot f\left([\mathrm{~Hz}]=\left[\frac{1}{\mathrm{~s}}\right]\right.
$$

- Input signal:
- We know that:

$$
\begin{aligned}
& v_{s}(t)=V_{s} \cos (\omega t) \quad \underbrace{\cos }_{V_{0}} \underbrace{\text { Phase shift }}_{\text {Amp scale }} \\
& v_{o}(t)=\underbrace{K} \cdot V_{s} \cos (\omega t+\phi)
\end{aligned}
$$

Exponential Representation

- Euler's Theorem

$$
e^{j w t}=\cos (w t)+j \sin (w t)
$$

- $\sin (w t)$ and $\cos (w t)$ can be represented by linear combination of complex exponential:

$$
\begin{aligned}
& \cos (w t)=\frac{1}{2}\left(e^{j w t}+e^{-j w t}\right) \\
& \sin (w t)=\frac{1}{2 j}\left(e^{j w t}-e^{-j w t}\right)
\end{aligned}
$$

Magic: Turn Diff Eq into Algebraic Eq

- Integration and differentiation are trivial with complex numbers:

$$
\frac{d}{d t} e^{j \omega t}=j \omega e^{i \omega t} \quad \int e^{i \omega t} d \tau=\frac{1}{i \omega} e^{i \omega t}
$$

- Any ODE is now trivial algebraic manipulations ... in fact, we'll show that you don't even need to directly derive the ODE by using phasors
- The key is to observe that the current/voltage relation for any element can be derived for complex exponential excitation

Solving LPF with Phasors

- Let's excite the system with a complex exp:

$$
\text { Trarsfer } f_{x} \quad \frac{V_{0}}{V_{s}}=\frac{1}{(1+j \omega \cdot \tau)}
$$

Easy!!!

Magnitude and Phase Response

- The system is characterized by the complex function

$$
\underline{H(\omega)}=\frac{V_{0}}{V_{s}}=\frac{1}{(1+j \omega \cdot \tau)}
$$

Frequency Domain

$$
\tau=R C
$$

$$
[s]=[\Omega] c f]
$$

- The magnitude and phase response match our previous calculation:

$$
\begin{aligned}
\text { magnitude } & |H(\omega)|=\left|\frac{V_{0}}{V_{s}}\right|=\frac{1}{\sqrt{1+(\omega \tau)^{2}}} \\
& \prec H(\omega)=\varlimsup_{2.8}^{-\tan ^{-1} \omega \tau}
\end{aligned}
$$

$$
P=a+j b
$$

$$
|p|=\sqrt{a^{2}+b^{2}}
$$

$$
\angle P=\tan ^{-1}\left(\frac{b}{a}\right)
$$

Why did it work?

- Again, the system is linear:

$$
y=\mathbf{L}\left(x_{1}+x_{2}\right)=\mathbf{L}\left(x_{1}\right)+\mathbf{L}\left(x_{2}\right)
$$

- To find the response to a sinusoid, we can find the response to $\left(e^{i \omega t}\right.$ and $e^{-i \omega t}$ and sum the results:

(cont.)

- Since the input is real, the output inas to be real:

$$
y(t)=\frac{\left.\left.H(\omega) e^{i \omega}\right)+H(-\varphi) e^{-i \omega t}\right)}{2}
$$

- That means the second term is the conjugate of the first:

$$
H(-\omega)=H(\omega)^{*}
$$

$$
\frac{|H(-\omega)|=|H(\omega)|}{\prec H(-\omega)=-\frac{-}{\uparrow}\langle H(\omega)=-\phi} \quad \text { (edd function) }
$$

- Therefore the output is:

$$
x(t)=\cos (\omega t)
$$

$$
y(t)=\frac{|H(\omega)|}{2}\left(e^{i(\omega t+\phi)}+e^{-i(\omega t+\phi)}\right)
$$

$$
=|H(\omega)| \underline{\cos (\omega t}+\phi)_{2}
$$

Phasors

drop $e^{j \omega t}$, track $e^{j \phi}$

- With our new confidence in complex numbers, we go full steam ahead and work directly with them ... we can even drop the time factor $e^{i \omega t}$ since it will cancel out of the equations.
- Excite system with a phasor:
- Response will also be phasor: $\widetilde{V}_{2}=V_{2} e^{j \phi_{2}}$

$$
\frac{\widetilde{V}_{1}}{\widetilde{V}_{2}}=\frac{V_{1} e^{i \phi_{1}}}{V_{2} e^{j \phi_{2}}}
$$

- For those with a Linear System background, we're going to work in the frequency domain
- This is the Laplace domain with $S=j \omega$

Capacitor I-V Phasor Relation

- Find the Phasor relation for current and voltage in a cap:
complex

$$
\begin{aligned}
& n F=10^{-9} \mathrm{~F} \\
& \mathrm{PF}=1 \operatorname{Li}^{-1 V^{-F}} \quad i_{c}(t)=C \frac{d v_{C}(t)}{d t} \\
& f F=10^{\circ} \mathrm{F}
\end{aligned}
$$

$$
I_{c} e^{j \omega t}=C \frac{d}{d t}\left[V_{c} e^{j \omega t}\right]
$$

Impedance
90° Phase Shift

$$
C V_{c} \frac{d}{d t} e^{j \omega t}=\underline{j \omega} C V_{c} e^{j o t}
$$

between t no voltage

$$
I_{c}{ }_{c}{ }^{\text {jot }}=j \omega C V_{c}{ }_{c}{ }^{\text {jot }}
$$

$$
\text { Resistor } V=I R
$$

$$
I_{c}=j \omega C V_{c}
$$

$$
\frac{V}{I}=R
$$

$$
\begin{array}{r}
\frac{1}{\left[\frac{\xi}{s}\right]}=\left[\frac{s}{F}\right]=\left[\frac{[\Omega}{\frac{1}{m}}\right] \\
\text { BSA }
\end{array}
$$

Inductor I-V Phasor Relation

- Find the Phasor relation for current and voltage in an inductor:

$$
\begin{aligned}
& L I \frac{d}{d t} e^{j \omega t}=j \underline{\omega} L I e^{j \omega t} \quad \frac{V}{I}=j \omega L=Z_{L} \\
& V e^{j \omega t}=j \omega L I e^{j a r t} \\
& \underline{V}=j \omega L \underline{I} \\
& {\left[\frac{1}{5}\right][H]=[\Omega]}
\end{aligned}
$$

Impede the Currents!

- Suppose that the "input" is defined as the voltage of a terminal pair (port) and the "output" is defined as the current into the port:

$$
\begin{aligned}
& v(t)=V e^{j \omega t}=|V| e^{j\left(\omega t+\phi_{v}\right)} \\
& i(t)=I e^{j \omega t}=|I| e^{j\left(\omega t+\phi_{i}\right)}
\end{aligned}
$$

- The impedance \mathbf{Z} is defined as the ratio of the phasor voltage to phasor current ("self" transfer function)

$$
\begin{aligned}
& \text { Complex } \\
& Z(\omega)
\end{aligned}=H(\omega)=\frac{V}{I}=\left|\frac{V}{I}\right| e^{j\left(\phi_{v}-\phi_{i}\right)}
$$

Admit the Currents!

- Suppose that the "input" is defined as the current of a terminal pair (port) and the "output" is defined as the voltage into the port:

$$
\begin{aligned}
& v(t)=V e^{j \omega t}=|V| e^{j\left(\omega t+\phi_{v}\right)} \\
& i(t)=I e^{j \omega t}=|I| e^{j\left(\omega t+\phi_{i}\right)}
\end{aligned}
$$

- The admittance \mathbf{Y} is defined as the ratio of the phasor current to phasor voltage ("self" transfer function)

$$
\begin{aligned}
& \text { function) } \\
& \text { Adintance } Y(\omega)=H(\omega)=\frac{I}{V}=\left|\frac{I}{V}\right| e^{j\left(\phi_{i}-\phi_{v}\right)} \quad \begin{array}{c}
\text { mho } \\
\text { mho }
\end{array}=\begin{array}{c}
{[S]} \\
\text { Simen }
\end{array}
\end{aligned}
$$

Voltage and Current Gain

- The voltage (current) gain is just the voltage (current) transfer function from one port to another port:

- If $|G|>1$, the circuit has voltage (current) gain
- If $|G|<1$, the circuit has loss or attenuation

Transimpedance/admittance

- Current/voltage gain are unit-less quantities
- Sometimes we are interested in the transfer of voltage to current or vice versa

$$
\begin{aligned}
& V=G_{\operatorname{ain}}=\frac{V_{2}}{V_{1}} \\
& I=G_{a i n}=\frac{I_{2}}{I_{1}}
\end{aligned}
$$

$$
\begin{aligned}
J(\omega) & =\frac{V_{2}}{I_{1}}=\left|\frac{V_{2}}{I_{1}}\right| e^{j\left(\phi_{2}-\phi_{1}\right)} \\
\text { Input }=\text { current } & {[\Omega] \text { Transimpedence } } \\
K(\omega) & =\frac{I_{2}}{V_{1}}=\left|\frac{I_{2}}{V_{1}}\right| e^{j\left(\phi_{2}-\phi_{1}\right)}
\end{aligned}
$$

Direct Calculation of \boldsymbol{H} (no DEs)

- To directly calculate the transfer function (impedance, trans-impedance, etc) we can generalize the circuit analysis concept from the "real" domain to the "phasor" domain
- With the concept of impedance (admittance), we can now directly analyze a circuit without explicitly writing down any differential equations
- Use KVL, KCL, mesh analysis, loop analysis, or node analysis where inductors and capacitors are treated as complex resistors

LPF Example: Again!

- Instead of setting up the DE in the time-domain, let's do it directly in the frequency domain
- Treat the capacitor as an impedance:

time domain "real" circuit
- We know the impedances:

$$
Z_{R}=R
$$

frequency domain "phasor" circuit

$$
Z_{C}=\frac{1}{j \omega C} \quad H=\frac{V_{0}}{V_{\tau}}=\frac{V_{i} \cdot \frac{Z_{c}}{Z_{R}+Z_{C}}}{R+\frac{1}{\sqrt[j \omega c]{ }}}
$$

Bode Plots

- Simply the log-log plot of the magnitude and phase response of a circuit (impedance, transimpedance, gain, ...)
- Gives insight into the behavior of a circuit as a function of frequency
- The "log" expands the scale so that breakpoints in the transfer function are clearly delineated

Frequency Response of Low-Pass Filters

$$
\omega_{0}=\frac{1}{R C}=\frac{1}{\tau}
$$

$|T(\omega)|=\frac{1}{\sqrt{1+\left(\omega / \omega_{0}\right)^{2}}}$
$\angle T(\omega)=-\tan ^{-1}\left(\omega / \omega_{0}\right)$
$\omega_{3 a B}=\omega_{0} \quad[\mathrm{rad} / \mathrm{sec}]$
$f_{3 d B}=\frac{\omega_{0}}{2 \pi} \quad[\mathrm{~Hz}]$

10. $\log \cdot\left|\frac{V_{0}^{2}}{\mid V_{c}^{2}}\right|$
(a)
$\frac{1}{R C} \quad|H|=\frac{1}{\sqrt{2}}$
$\frac{1}{R C}=3 d B$ frequency low

$\omega \gg \omega_{0}$

$$
\begin{aligned}
& \omega=\omega_{0}^{(b)} \\
& H=\frac{1}{1+j}=1-j \quad \angle H=-45^{\circ}
\end{aligned}
$$

Frequency Response of High-Pass Filters

$T(\omega)=\frac{R}{R+\frac{1}{j \omega C}}=\frac{1}{1+\frac{1}{j \omega R C}}=\frac{1}{1-j \omega_{0} / \omega}$

(a)
$\omega_{0}=\frac{1}{R C}$
$|T(\omega)|=\frac{1}{\sqrt{1+\left(\omega_{0} / \omega\right)^{2}}}$
$\angle T(\omega)=\tan ^{-1}\left(\omega_{0} / \omega\right)$
$\omega_{3 d B}=\omega_{0} \quad[\mathrm{rad} / \mathrm{sec}]$
$f_{3 d B}=\frac{\omega_{0}}{2 \pi} \quad[\mathrm{~Hz}]$

(b)

Example: High-Pass Filter

- Using the voltage divider rule:

$$
\begin{aligned}
& H(\omega)=\frac{j \omega L}{R+(j \omega L}=\frac{j \omega \frac{L}{R}}{1+j \omega \frac{L}{R}} \\
& H(\omega)=\frac{j \omega \tau}{1+j \omega \tau} \\
& \omega \rightarrow \infty \quad|H| \rightarrow\left|\frac{j \omega \tau}{j \omega \tau}\right|=1 \\
& \omega \rightarrow 0|H| \rightarrow \frac{0}{1+0}=0 \\
& \omega=\frac{1}{\tau}|H|=\left|\frac{j}{1+j}\right|=\frac{1}{\sqrt{2}}
\end{aligned}
$$

Approximate versus Actual Plot

- Approximate curve accurate away from breakpoint
- At breakpoint there is a 3 dB error

HPF Phase Plot

- Phase can be naturally decomposed as well:

$$
\prec H(\omega)=\prec \frac{j \omega \tau}{1+j \omega \tau}=\prec j \omega \tau+\prec \frac{1}{1+j \omega \tau}=\frac{\pi}{2}-\tan ^{-1} \omega \tau
$$

- First term is simply a constant phase of 90 degrees
- The second term is the arctan function
- Estimate arctan function:

Power Flow

- The instantaneous power flow into any element is the product of the voltage and current: $P(t)=i(t) v(t)$
- For a periodic excitation, the average power is:

$$
P_{a v}=\int_{(7)} i(\tau) v(\tau) d \tau
$$

- In terms of sinusoids we have

Power $=I \times V$
$P_{a v}=\int_{T}|I| \cos \left(\omega t+\varphi_{i}\right)|V| \cos \left(\omega t+\varphi_{v}\right) d \tau$
$=|I| \cdot|V| \int_{T}\left(\cos \omega t \cos \varphi_{i}-\sin \omega t \sin \varphi_{i}\right) \cdot\left(\cos \omega t \cos \varphi_{v}-\sin \omega t \sin \varphi_{v}\right) d \tau$
$=|I| \cdot|V| \int_{T} d \tau \cos ^{2} \omega t \cos \varphi_{i} \cos \varphi_{v}+\sin ^{2} \omega t \sin \varphi_{i} \sin \varphi_{v}+c \sin \omega t \cos \omega t$
$=\frac{|I| \cdot|V|}{2}\left(\cos \varphi_{i} \cos \varphi_{v}+\sin \varphi_{i} \sin \varphi_{v}\right)=\frac{|I| \cdot|V|}{2} \cos \underbrace{\phi}\left(\varphi^{\downarrow}-\varphi_{v}\right)$

Power Flow with Phasors

$$
P_{a v}=\frac{|I| \cdot|V|}{2} \cos \left(\phi_{i}-\phi_{v}\right)
$$

Power Factor

- Note that if $\left(\phi_{i}-\phi_{v}\right)=\frac{\pi}{2}$, then $P_{a v}=\frac{|I| \cdot V}{2} \cos \left(\frac{\pi}{2}\right)=0$
- Important: Power is a non-linear function so we can't simply take the real part of the product of the phasors:

$$
P \neq \operatorname{Re}[I \cdot V]
$$

- From our previous calculation:

$$
P=\frac{|I| \cdot|V|}{2} \cos \left(\phi_{i}-\phi_{v}\right)=\frac{1}{2} \operatorname{Re}\left[I \cdot V^{*}\right]=\frac{1}{2} \operatorname{Re}\left[I^{*} \cdot V\right]
$$

Summary

- Complex exponentials are eigen-functions of LTI systems
- Steady-state response of LCR circuits are LTI systems
- Phasor analysis allows us to treat all LCR circuits as simple "resistive" circuits by using the concept of impedance (admittance)
- Frequency response allows us to completely characterize a system
- Any input can be decomposed into either a continuum or discrete sum of frequency components
- The transfer function is usually plotted in the log-log domain (Bode plot) - magnitude and phase
- Location of poles/zeros is key

